In relation to policy, "the environment" is particularly challenging. It includes masses of detail concerning many particular issues, which require separate analysis and management. At the same time, there are broad strategic issues, which should guide regulatory work, such as those connected with "sustainability". Nothing can be managed in a convenient isolation; issues are mutually implicated; problems extend across many scale levels of space and time; and uncertainties and value-loadings of all sorts and all degrees of severity affect data and theories alike.
This situation is a new one for policy makers. In one sense the environment is in the domain of Science: the phenomena of concern are located in the world of nature. Yet the tasks are totally different from those traditionally conceived for Western science. For that, it was a matter of conquest and control of Nature; now we must manage, accommodate and adjust. We know that we are no longer, and never really were, the "masters and possessors of Nature" that Descartes imagined for our role in the world (Descartes 1638).
To engage in these new tasks we need new intellectual tools. A picture of reality designed for controlled experimentation and abstract theory building, can be very effective with complex phenomena reduced to their simple, atomic elements. But it is not best suited for the tasks of environmental policy today. The scientific mind-set fosters expectations of regularity, simplicity and certainty in the phenomena and in our interventions. But these can inhibit the growth of our understanding of the problems and of appropriate methods to their solution. Here we shall introduce and articulate several concepts, which can provide elements of a framework to understand environmental issues. They are all new, and still evolving. There is no orthodoxy concerning their content or the conditions of their application
The leading concept is "complexity". This relates to the structure and properties of the phenomena and the issues for environmental policy. Systems that are complex are not merely complicated; by their nature they involve deep uncertainties and a plurality of legitimate perspectives. Hence the methodologies of traditional laboratory-based science are of restricted effectiveness in this new context.
The most general methodology for managing complex science-related issues is "Post-Normal Science" (Funtowicz and Ravetz 1992, 1993, Futures 1999). This focuses on aspects of problem solving that tend to be neglected in traditional accounts of scientific practice: uncertainty and value loading. It provides a coherent explanation of the need for greater participation in science-policy processes, based on the new tasks of quality assurance in these problem-areas.
See more (and access to tools and methods) on: http://www.nusap.net
You need to be a member of Global Sensemaking to add comments!
Join Global Sensemaking